
《后端极速转职Golang⼯工程师》

golang环境安装

源码包下载

https://golang.org/dl/ 国外官⽅方

https://golang.google.cn/dl/ 中国镜像

https://studygolang.com/dl 中⽂文⽹网站

linux为例例

源码包 go1.14.4.linux-amd64.tar.gz

解压源码包到/usr/local sudo tar -zxvf go1.14.4.linux-amd64.tar.gz -C /usr/local/

配置环境变量量
打开~/.bashrc 添加如下配置变量量

export GOROOT=/usr/local/go
export GOPATH=$HOME/go
export PATH=$PATH:$GOROOT/bin:$GOPATH/bin

GOROOT 表示源码包所在路路径

GOPATH 开发者Go的项⽬目默认路路径

不不同的操作系统具体配置不不同

检测开发环境

⼿手动加载~/.bashrc source ~/.bashrc

go version

go --help

没有任何错误提示表示环境搭建成功

IDE的推荐

收费 Goland

免费 VsCode

Vim + go插件

golang语⾔言特性

优势

简单的部署

可直接编译成机器器码可执⾏行行

不不依赖其他库

直接运⾏行行即可部署

静态类型语⾔言
编译的时候即可检查出来隐藏的
⼤大多数问题

语⾔言层⾯面的并发
天⽣生基因⽀支持

充分的利利⽤用多核

强⼤大的标准库

runtime系统调度机制

⾼高效的GC垃圾回收

丰富的标准库

简单易易学

25个关键字

C语⾔言简洁基因，内嵌C语法⽀支持

⾯面向对象特征

跨平台

⼤大⼚厂领军

适合做什什么

云计算基础设施领域

docker

kubernetes

etcd

consul

cloudflare CDN

七⽜牛云存储

基础后端软件

tidb

influxdb

cockroachdb

微服务
go-kit

micro

互联⽹网基础设施
以太坊

hyperledger

明星作品

不不⾜足

包管理理，⼤大部分包都在github上

⽆无泛化类型

所有Excepiton都⽤用Error来处理理(⽐比较有争议)。

对C的降级处理理，并⾮非⽆无缝，没有C降级到asm那么完美(序列列化问题)

golang语法新奇

从⼀一个main函数初⻅见golang语法

 package main

 import "fmt"

 func main() {
 /* 简单的程序 万能的hello world */
 fmt.Println("Hello Go")
 }

golang中的表达式，加";", 和不不
加 都可以，建议是不不加

函数的{ ⼀一定是 和函数名在同⼀一⾏行行的，否则编译错

package main //程序的包名

/*
import "fmt"
import "time"
*/
import (

"fmt"
"time"

)

变量量 变量量的声明

局部变量量的声明

⽅方法⼀一
//⽅方法⼀一：声明⼀一个变量量 默认的值是0
var a int

⽅方法⼆二
//⽅方法⼆二：声明⼀一个变量量，初始化⼀一个值
var b int = 100

⽅方法三
//⽅方法三：在初始化的时候，可以省去数据类型，通过值⾃自动匹配当前的变量量的数据类型
var c = 100

⽅方法四(常⽤用)
//⽅方法四：(常⽤用的⽅方法) 省去var关键字，直接⾃自动匹配
e := 100

全局变量量的声明 ⽅方法四不不⽀支持全局

多变量量的声明

单⾏行行写法
var xx, yy int = 100, 200

var kk, ll = 100, "Aceld"

多⾏行行写法

var (
vv int = 100
jj bool = true

)

常量量与iota

常量量

const a int = 10

const (
 a = 10
 b = 20
)

iota

与const来表示枚举类型

函数

多返回值

init函数与import导包

init函数

制作包的时候，项⽬目路路径如下

$GOPATH/GolangStudy/5-init/
├── lib1/
│ └── lib1.go
├── lib2/
│ └── lib2.go
└── main.go

main.go

lib1.go

lib2.go

import导包

import _ “fmt”
给fmt包起⼀一个别名，匿匿名， ⽆无法使⽤用当前包的⽅方法，但是
会执⾏行行当前的包内部的init()⽅方法

import aa “fmt” 给fmt包起⼀一个别名，aa， aa.Println()来直接调⽤用。

import . “fmt”
将当前fmt包中的全部⽅方法，导⼊入到当前本包的作⽤用中，fmt包中
的全部的⽅方法可以直接使⽤用API来调⽤用，不不需要fmt.API来调⽤用

指针

defer

知识点1 defer的执⾏行行顺序

执⾏行行顺序是 fun3() -> func2()-> func1()

知识点2 defer和return谁先谁后

执⾏行行结果:

结论: return之后的语句句先执⾏行行，defer后的语句句后执⾏行行

切⽚片slice

数组 声明数组的⽅方式 数组的⻓长度是固定的

固定⻓长度的数组在传参的时候，
是严格匹配数组类型的

slice(动态数组)

动态数组在传参上是引⽤用传递，⽽而且不不同元素⻓长度的动态数组他们的形参是⼀一致。

slice

声明⽅方式

使⽤用⽅方式
切⽚片容量量的追加

len 和 cap

切⽚片的⻓长度和容量量不不同，⻓长度表示左指针⾄至右指针之间的距离，容量量表示左指针⾄至底层数组末尾的距离。

切⽚片的扩容机制，append的时候，如果⻓长度增加后超过容量量，则将容量量增加2倍

切⽚片的截取

map
声明⽅方式

使⽤用⽅方式

⾯面向对象特征

封装

类名、属性名、⽅方法名 ⾸首字⺟母⼤大写表示对外(其他包)
可以访问，否则只能够在本包内访问

继承

⽗父类

⼦子类

定义⼦子类

多态

基本的要素

有⼀一个⽗父类(有接⼝口)

有⼦子类(实现了了⽗父类的全部接⼝口⽅方法)

⽗父类类型的变量量(指针) 指向(引⽤用) ⼦子类的具体数据变量量

interface 通⽤用万能类型

interface{}

空接⼝口

int 、string、float32、
float64、struct

都实现了了interface{}

就可以⽤用interface{}类型 引⽤用 任
意的数据类型

类型断⾔言

反射

变量量的结构

reflect包

结构体标签

结构体标签的定义

结构体标签应⽤用
json编解码

orm映射关系

golang⾼高阶

goroutine

runtime.Goexit() 退出当前的goroutine

channel

channel的定义

channel的使⽤用

⽆无缓冲的channel

在第 1 步，两个 goroutine 都到达通道，但哪个都没有开始执⾏行行发送或者接收。

在第 2 步，左侧的 goroutine 将它的⼿手伸进了了通道，这模拟了了向通道发送数据的⾏行行
为。这时，这个 goroutine 会在通道中被锁住，直到交换完成。

在第 3 步，右侧的 goroutine 将它的⼿手放⼊入通道，这模拟了了从通道⾥里里接收数据。这
个 goroutine ⼀一样也会在通道中被锁住，直到交换完成。

在第 4 步和第 5 步，进⾏行行交换，并最终，在第 6 步，两个 goroutine 都将它们的
⼿手从通道⾥里里拿出来，这模拟了了被锁住的 goroutine 得到释放。两个 goroutine 现在
都可以去做其他事情了了。

有缓冲的channel

在第 1 步，右侧的 goroutine 正在从通道接收⼀一个值。

在第 2 步，右侧的这个 goroutine独⽴立完成了了接收值的动作，⽽而左侧的
goroutine 正在发送⼀一个新值到通道⾥里里。

在第 3 步，左侧的goroutine 还在向通道发送新值，⽽而右侧的 goroutine 正在
从通道接收另外⼀一个值。这个步骤⾥里里的两个操作既不不是同步的，也不不会互相阻
塞。

最后，在第 4 步，所有的发送和接收都完成，⽽而通道⾥里里还有⼏几个值，也有⼀一些空
间可以存更更多的值。

特点
当channel已经满，再向⾥里里⾯面写数据，就会阻塞

当channel为空，从⾥里里⾯面取数据也会阻塞

关闭channel

channel不不像⽂文件⼀一样需要经常去关闭，只有当你确实没有任何发送数据了了，或者你想显式的结
束range循环之类的，才去关闭channel；

关闭channel后，⽆无法向channel 再发送数据(引发 panic 错误后导致接收⽴立即返回零值)；

关闭channel后，可以继续从channel接收数据；

对于nil channel，⽆无论收发都会被阻塞。

channel与range

channel与select

单流程下⼀一个go只能监控⼀一个channel的状态，select可以完成
监控多个channel的状态

select具备多路路channel的监控状态功能

go modules模块管理理

课程⽬目标 掌握go mod 和 go modules 进⾏行行项⽬目依赖管理理

什什么是Go Modules

Go modules 是 Go 语⾔言的依赖解决⽅方案，发布于 Go1.11，成⻓长于
Go1.12，丰富于 Go1.13，正式于 Go1.14 推荐在⽣生产上使⽤用。

解决了了什什么问题

Go 语⾔言⻓长久以来的依赖管理理问题。

“淘汰”现有的 GOPATH 的使⽤用模式。

统⼀一社区中的其它的依赖管理理⼯工具（提供迁移功能）。

GOPATH的⼯工作模式 GOPATH的弊端

⽆无版本控制概念

⽆无法同步⼀一致第三⽅方版本号

⽆无法指定当前项⽬目引⽤用的第三⽅方版本号

Go Modules模式

go mod命令

go mod init ⽣生成 go.mod ⽂文件

go mod download 下载 go.mod ⽂文件中指明的所有依赖

go mod tidy 整理理现有的依赖

go mod graph 查看现有的依赖结构

go mod edit 编辑 go.mod ⽂文件

go mod vendor 导出项⽬目所有的依赖到vendor⽬目录

go mod verify 校验⼀一个模块是否被篡改过

go mod why 查看为什什么需要依赖某模块

go mod 环境变量量

GO111MODULE
是否开启go modules模式

建议go V1.11之后，都设置为on

GOPROXY

项⽬目的第三⽅方依赖库的下载源地址

建议设置国内的地址
阿⾥里里云 https://mirrors.aliyun.com/goproxy/

七⽜牛云 https://goproxy.cn,direct

direct ⽤用于指示 Go 回源到模块版本的源地址去抓取（⽐比如 GitHub 等）

GOSUMDB
⽤用来校验拉取的第三⽅方库是否是完整的

默认也是国外的⽹网站，如果设置了了GOPROXY，这个就不不⽤用设置了了

GONOPROXY 通过设置GOPRIVATE即可

GONOSUMDB 通过设置GOPRIVATE即可

GOPRIVATE 通过设置GOPRIVATE即可

go env -w GOPRIVATE="git.example.com,github.com/aceld/zinx

表示git.example.com 和 github.com/aceld/zinx
是私有仓库，不不会进⾏行行GOPROXY下载和校验

go evn -w GOPRIVATE="*.example.com"

表示所有模块路路径为example.com的⼦子域名，⽐比如
git.example.com 或者 hello.example.com 都不不进⾏行行
GOPROXY下载和校验

通过 go env来查看环境变量量
go env -w GO111MODULE=on

或者通过 Linux export 环境⽅方式也可以

使⽤用Go Modules初始化项⽬目

1 开启Go Modules模块 保证GO111MODULE=on

go env -w GO111MODULE=on

export GO111MODULE=on
设置在⽤用户启动脚本中

需要重新打开终端或者执⾏行行source ~/.bashrc

2 初始化项⽬目

任意⽂文件夹创建⼀一个项⽬目（不不要求在$GOPATH/src） mkdir -p $HOME/aceld/modules_test

创建go.mod⽂文件，同时起当前项⽬目的模块名称 go mod init github.com/aceld/module_test

就会⽣生成⼀一个go mod⽂文件
module github.com/aceld/moudles_test

go 1.14

在该项⽬目编写源代码

如果源代码中依赖某个库(⽐比如: github.com/aceld/zinx/znet)

⼿手动down go get github.com/aceld/zinx/znet

⾃自动down

go mod ⽂文件会添加⼀一⾏行行新代码

module github.com/aceld/moudles_test

go 1.14

require github.com/aceld/zinx v0.0.0-20200315073925-f09df55dc746 // indirect

含义当前模块依赖github.com/aceld/zinx

依赖的版本是 v0.0.0-20200315073925-f09df55dc746

//indirect 表示间接依赖
因为项⽬目直接依赖的是znet包

所以所间接依赖zinx包

会⽣生成⼀一个go.sum⽂文件

github.com/aceld/zinx v0.0.0-20200315073925-f09df55dc746 h1:TturbcEfboY81jsKVSQtGkqk8FN8ag0TmKYzaFHflmQ=
github.com/aceld/zinx v0.0.0-20200315073925-f09df55dc746/go.mod h1:bMiERrPdR8FzpBOo86nhWWmeHJ1cCaqVvWKCGcDVJ5M=
github.com/golang/protobuf v1.3.3/go.mod h1:vzj43D7+SQXF/4pzW/hwtAqwc6iTitCiVSaWz5lYuqw=

go.sum⽂文件的作⽤用 罗列列当前项⽬目直接或间接的依赖所有模块版本，保证今后项⽬目依赖的版本不不会被篡改

h1:hash
表示整体项⽬目的zip⽂文件打开之后的全部⽂文件的校验和来⽣生成的hash

如果不不存在，可能表示依赖的库可能⽤用不不上

xxx/go.mod h1:hash go.mod⽂文件做的hash

修改项⽬目模块的版本依赖关系

 go mod edit -replace=zinx@v0.0.0-20200306023939bc416543ae24=zinx@v0.0.0-20200221135252-8a8954e75100

go mod⽂文件就会被修改

module github.com/aceld/modules_test

go 1.14

require github.com/aceld/zinx v0.0.0-20200306023939-bc416543ae24 // indirect

replace zinx v0.0.0-20200306023939-bc416543ae24 => zinx v0.0.0-20200221135252-8a8954e75100

⼩小试⽜牛⼑刀 golang经典的案例例 即时通信系统

https://golang.org/dl/
https://golang.google.cn/dl/
https://studygolang.com/dl
https://mirrors.aliyun.com/goproxy/
https://goproxy.cn,direct
http://git.example.com
http://github.com/aceld/zinx
http://git.example.com
http://github.com/aceld/zinx
http://example.com
http://example.com
http://git.example.com
http://hello.example.com
http://github.com/aceld/module_test
http://github.com/aceld/moudles_test
http://github.com/aceld/zinx/znet
http://github.com/aceld/zinx/znet
http://github.com/aceld/moudles_test
http://github.com/aceld/zinx
http://github.com/aceld/zinx
http://github.com/aceld/zinx
http://github.com/aceld/zinx
http://github.com/golang/protobuf
http://github.com/aceld/modules_test
http://github.com/aceld/zinx

